gyrator变换域的高鲁棒多图像加密算法

来源 :中国图象图形学报 | 被引量 : 2次 | 上传用户:madeli
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目的随着互联网通信和多媒体技术的快速发展,单幅图像加密技术难以满足日益增长的数据传输需求。为提高图像加密系统的传输效率,同时保证安全性和鲁棒性,本文构建一种基于gyrator变换和多分辨率奇异值分解(multi-resolution singular value decomposition,MRSVD)的多图像加密算法。方法首先,将明文图像每两幅组合为复数矩阵,利用改进的logistic映射生成混沌相位掩模,对复数矩阵进行gyrator域的双随机相位编码。其次,将变换后矩阵的实部分量和虚部分量组合为
其他文献
《庄子·逍遥游》中的鲲化鹏故事是我国文学上一个重要的题材,本文从《庄子》《列子》中关于鲲鹏故事的记载、“鲲化鹏”思想、神话中“鲲化鹏”故事、现实中的“鲲、鹏”等
非真实感绘制技术(non-photorealistic rendering,NPR)主要用于模拟艺术风格、表现艺术特质和传达用户情感等,是计算机图形学的重要组成部分,其研究对象逐渐丰富,研究方法不断创新。本文从基于图像建模的绘制方法、基于深度学习的绘制方法、中国特有艺术作品的数字化模拟、非真实感情感特征识别以及非真实感视频场景绘制等5个方面概述目前研究进展,然后从扩展非真实感研究对象、增强视频绘制
公路货运机动灵活,可以实现“门对门”的运输,是我国主要的货运方式。相比其它的运输方式,公路货运入行“门槛”低,新兴的小型货运企业和个体营业者如雨后春笋般地出现,货运市场运
随着网络上图像和视频数据的快速增长,传统图像检索方法已难以高效处理海量数据。在面向大规模图像检索时,特征哈希与深度学习结合的深度哈希技术已成为发展趋势,为全面认识和理解深度哈希图像检索方法,本文对其进行梳理和综述。根据是否使用标签信息将深度哈希方法分为无监督、半监督和监督深度哈希方法,根据无监督和半监督深度哈希方法的主要研究点进一步分为基于卷积神经网络(convolutional neural n
计算机视觉在智能制造工业检测中发挥着检测识别和定位分析的重要作用,为提高工业检测的检测速率和准确率以及智能自动化程度做出了巨大的贡献。然而计算机视觉在应用过程中一直存在技术应用难点,其中3大瓶颈问题是:计算机视觉应用易受光照影响、样本数据难以支持深度学习、先验知识难以加入演化算法。这些瓶颈问题使得计算机视觉在智能制造中的应用无法发挥最佳效能。因此,需要系统地加以分析和解决。本文总结了智能制造和计算
目的利用深度卷积神经网络(deep convolutional neural network,DCNN)构建的非开关型随机脉冲噪声(random-valued impulse noise,RVIN)降噪模型在降噪效果和执行效率上均比主流的开关型RVIN降噪算法更有优势,但在实际应用中,这类基于训练(数据驱动)的降噪模型,其性能却受制于能否对待降噪图像受噪声干扰的严重程度进行准确的测定(即存在数据依