论文部分内容阅读
Four 16.7 km-long tunnels with diameters ranging from 12.4 to 14.6 m are now under construction at Jinping Ⅱ hydropower station along the Yalong River. The tunnels pass through Triassic rocks below Jinping Mountain. The tunnels are characterized with high overburden, long alignment and complex geological conditions. Brittle failure in marble and squeezing in schist are the primary problems in tunnelling. This paper introduces the studies of laboratory tests on Jinping Ⅱ marble as well as numerical prediction of excavation damaged zone (EDZ) of tunnel section in brittle marble and determination of reinforced concrete lining thickness for restraining time-dependent deformation in the schist tunnel section. Laboratory tests indicate that Jinping Ⅱ marble presents a complex brittle-ductile-plastic transition behavior of post-peak response with increasing confining pressure. Such behavior can be described numerically with the Hoek-Brown model. The EDZ was calibrated and predicted using both fast Lagrangian analysis of continua (FLAC) and particle flow code (PFC). The predicted result of EDZ in sections with different qualities of rock mass under various overburden pressures is quite helpful in understanding EDZ characterization and support design. A power-law creep model vas used to support the lining design, especially in determining the lining thickness.Field convergence measurement data over 19 months were used to calibrate the creep model properties, followed by a sensibility analysis of reinforced concrete lining thickness that was launched to present the maximum lining compressive stress.