论文部分内容阅读
为解决现有路基震害预测方法主观性强且无法考虑非线性特征的问题,以贝叶斯网络(BN)为框架,将工程经验与历史路基震害样本融合,改进网络参数求解方法,建立一种基于BN的模糊(Fuzzy)-支持向量机(SVM)路基震害预测模型.利用Fuzzy理论求解BN参数的先验概率,同时利用SVM求解BN参数的实际样本潜在概率;基于贝叶斯原理,将先验概率与实际样本潜在概率融合,得到既满足震害工程经验又体现历史震害样本中非线性特性的预测模型.结果 表明:将提出的预测模型应用于汶川地震影响区的42个路基隐患点,预测准确率为80.95%.该模型在小样本情况下较传统机器学习方法(以SVM为代表)精度更高;并且,该模型在路基属性不完整的情况下也能有效预测震害等级.