论文部分内容阅读
垩白度是衡量优质大米品质的重要指标,随着农业检测自动化发展,利用机器视觉准确检测大米垩白度对大米生产加工具有重要意义。针对现有算法在分割垩白区域时存在抗干扰能力弱、稳定性差以及准确度低等问题,提出了一种基于图像显著性区域提取的垩白区域提取算法。利用大米垩白区域图像显著性的特点,对图像特征变化边缘进行提取,计算出边缘像素点个数以及边缘的总像素值,从而计算出边缘像素的平均值作为该区域的阈值。最后,利用计算得到的阈值对该区域进行分割,分割出整张图片的垩白区域,并计算出大米的垩白度。实验结果表明,该算法识别