论文部分内容阅读
通过建立灰色离散分数阶预测模型GM(1,1)、BP和RBF神经网络预测模型,以西安市建筑安装涂料产生的VOCs为例,将用于建筑安装的涂料量以及其驱动因子数据作为模型的输入值,用收集整理的2004—2011年16组西安建筑安装涂料消耗量数据进行BP和RBF神经网络训练模拟,2011-2014年5组年数据进行检验预测,采用曲线拟合度和相对误差2个评价指标对3种预测模型结果进行比较分析。结果表明,灰色预测、BP和RBF神经网络预测模型的样本训练及预测的平均误差为:-16.53%、7.05%和4.73%,结合真实