论文部分内容阅读
本文提出一种基于主成分分析法的动态神经网络模型实现高炉铁水含硅量多步预报。本方法将经主成分分析法处理后的高炉数据样本作为改进型Elman网络的输入,减少变量个数,简化网络结构;同时采用动态递归算法进行高炉铁水含硅量多步预报,具有较强的适应性。采用该方法对宝钢某高炉现场采集的数据进行预报实验,以±0.05作为预报误差,预报命中率达到89.12%。