论文部分内容阅读
分别以基于Xu指数的原子类型AI指数和电性拓扑状态指数作为分子结构描述符表征80个液态烃的分子结构特征,并分别结合人工神经网络和多元线性回归方法,对这80个液态烃的燃烧热进行定量结构-性质相关性建模和预测研究.结果表明,基于Xu指数的原子类型AI指数能更好地表征液态烃物质的分子结构特征,且液态烃燃烧热与分子结构间的线性关系要强于非线性关系.所建立的最佳预测模型为基于Xu指数的原子类型AI指数多元线性回归模型,其模型复相关系数为0.999,对测试集的平均预测相对误差为0.637%,模型预测值与实验值具有较好