基于直接升力与动态逆的舰尾流抑制方法

来源 :航空学报 | 被引量 : 0次 | 上传用户:pcfanzb
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在复杂的作战和着舰环境下,舰尾气流扰动是着舰误差的最主要来源之一.如果在着舰下滑阶段利用直接升力控制(DLC)的快速性和解耦性能力,可以极大地减轻飞行员着舰操纵负担并且提高着舰最后阶段对舰尾流的抑制能力.从航迹调节和姿态稳定的解耦角度出发,提出在非线性动态逆(NDI)控制框架下实现基于直接升力的着舰控制律方法,并通过建立含有舰尾流扰动的E-2C全量飞机仿真模型进行验证.结果表明:在非线性动态逆控制中引入直接升力的舰载机着舰控制律,可以实现在着舰下滑阶段姿态稳定的同时,通过直接升力快速解耦调节航迹误差,并且在引入舰尾流干扰的情况下,具有快速修正下滑倾角误差、抑制舰尾流干扰的能力,最终达到显著提高着舰精度的效果.
其他文献
本文总结了有关非牛顿流体射流雾化特性的研究进展.首先,阐述了预测非牛顿液体射流初次雾化失稳特性的理论方法,介绍了有关非牛顿流体射流初次雾化的实验现象和特性参数.当射流初次雾化的过程结束后,破碎产生的液滴会在高速气流中发生二次雾化.随后,总结了国内外有关非牛顿流体液滴二次雾化实验研究的相关进展.分析了液滴二次雾化的实验现象,总结了不同种类液滴二次雾化过程中所研究特性参数,如破碎模态、临界韦伯数和初始变形时间等随来流气体参数之间的关系,并介绍了基于液滴二次雾化物理过程所建立的预测喷雾场液滴平均粒径的雾化模型.
超声速条件下燃料和空气之间的高效混合是超然冲压发动机技术上的主要挑战.基于大涡模拟和流动稳定性分析,针对超声速尾迹-剪切流动开展了混合增强方法研究.尾迹的存在改变了混合层流动的速度剖面,对流动稳定性产生了重要影响,使混合层由三维最不稳定变为二维最不稳定,最不稳定扰动波频率和增长率增大.基于流动稳定性结果引入扰动的混合增强方式依然有效,根据稳定性结果设计了波纹隔板.数值结果表明:二维波纹壁引入的扰动未能增长,不具备混合强化效果,而三维波纹壁引入的扰动能够快速增长,具有混合强化效果,且波纹壁参数越接近最不稳定
航空航天、生物医学等领域均存在冲击波与空泡作用问题,冲击波尤其是多道冲击波作用下空泡溃灭包含着复杂的多相瞬变行为与物理现象.基于自主搭建的可压缩多相流并行数值平台,对液体中单一/多道冲击波与空泡的作用过程进行了数值模拟.通过对冲击波作用下空泡内波系性质,以及多道冲击波与空泡作用后的系列反射波系在液体中的相互作用过程进行详细解析,分析了不同冲击波作用下空泡的形变演化过程,探究了空泡的溃灭机制与特性.研究发现,相较于单一冲击波的作用,多道冲击波作用下空泡内部及周围液体流场中的波系结构更为复杂,然而无论是单一冲
航空发动机燃烧室几何结构复杂,湍流和化学反应存在强烈非线性相互作用,需要对流动和燃烧及其相互作用进行高精度高时空分辨率的刻画,目前燃烧室湍流燃烧数值模拟仍然是高难度的瓶颈问题之一.介绍了由北京航空航天大学航空发动机数值仿真研究中心、北京应用物理与计算数学研究所和中国工程物理研究院高性能数值模拟软件中心联合研发的AECSC-JASMIN软件主要框架、算法以及针对该软件的算例检验.在Sandia射流火焰、支板火焰和单头部燃烧室检验算例中,对比实验数据,射流和支板火焰预测结果与实验值一致;支板算例的平均相对误差
针对重型直升机(HLH)大重量、低转速的固有特性,提出了一种适用于重型直升机的飞行动力学刚弹耦合建模方法.该方法结合传统直升机飞行动力学与旋翼机体耦合动力学,将传统飞行力学的分析频段拓展到了5 Hz,额外考虑了桨叶和机体的弹性变形,基于阻抗匹配法推导出了显式的旋翼/机体耦合动力学方程,模拟了真实飞行状态下的直升机气弹耦合特性,利用该模型计算并分析了算例重型直升机的悬停飞行特性和空中共振稳定性.结果表明:旋翼机体耦合导致摆振前进型和机体弹性模态的阻尼-转速曲线先相互靠近至同一点再分离,可能引起直升机的高频瞬
为了全面加深对锥形液膜一次破碎机理的认识,对双层锥形液膜的雾化过程进行了数值模拟,重点研究了压降和同轴旋转空气对双层液膜宏观形态、液膜破碎模式、液膜破碎长度和喷雾锥角等液膜一次破碎特性的影响.数值计算的喷雾场宏观形态与试验结果接近,喷雾锥角和索特尔平均直径的计算最大误差分别为4.9%、7.4%.研究表明:同轴旋转空气参与雾化会改变喷雾场的整体形态;增大压降和空气速度会改变液膜的破碎模式和主导表面波模式;双层液膜的合并会在液膜表面产生剧烈的表面波动,同时会略微增大液膜的喷雾锥角;液膜的破碎长度会随着压降和同
高超声速激波/边界层干扰比超声速工况下具有更强的可压缩效应,再附之后会形成极高的局部力/热载荷,严重影响飞行器飞行安全.而激波/湍流边界层干扰区附近流动的三维特性使得流动更加复杂而难以预测.采用直接数值模拟对高超声速条件下的柱-裙激波/湍流边界层干扰进行了详细研究,特别是对G?rtler涡结构对分离泡、物面压力和热流造成的展向差异开展了定性和定量分析.研究发现,干扰区附近的分离泡结构呈现出明显的三维效应,且G?rtler涡展向分离位置截面的分离泡要明显小于再附位置,而这两个截面上分离泡的运动基本同步,没有
细长机身和大后掠机翼气动构型的飞行器大攻角飞行时,由于缺少横向阻尼,易发生以绕体轴滚转振动为主的摇滚运动,飞行安全受到严重威胁.针对三角翼摇滚问题,采用动网格技术,建立了气动、运动和控制多学科耦合的数值模拟方法.通过耦合非定常Navier-Stokes方程、刚体运动方程和经典控制律,采用控制面差动偏转的方式对三角翼摇滚主动控制过程进行了数值模拟,并分析了不同控制状态下三角翼受控滚转的运动特性.在来流马赫数为0.3的条件下,实现了80°后掠三角翼摇滚现象的有效控制.
双后掠布局能有效改善乘波体低速时的气动性能不足.为了获得双后掠乘波体,目前常采用的是定前缘型线的吻切锥乘波体设计方法,但该设计方法存在设计过程复杂,激波出口型线与理论不一致等问题.而采用直接投影获得双后掠乘波体的设计方法可以解决上述问题.为了系统研究基于投影法的双后掠乘波体的气动性能,使用CFD方法分析了采用该方法生成的双后掠乘波体在高超声速与低速时的气动性能.结果表明,该方法获得的乘波体在高超声速下的气动性能与定前缘型线的双后掠乘波体相当.且此方法仍保留了高超声速下“波效应”引起大攻角非线性升力、低速下
为更精准地考虑平均应力对单轴恒幅疲劳寿命的影响,在等效驱动力类平均应力模型的基础上,引入材料循环本构并提出了一个新的平均应力模型.定性地,该模型能够在更广泛寿命值范围和应力比范围内描述多种材料的等寿命线形状;定量地,该模型能够用来预测其他应力比下的疲劳寿命值,且预测值与试验数据符合良好.随后,还提出了一种获取模型系数的方式,能够在保证数据拟合可靠度的前提下进一步减少试验成本.所提出的平均应力模型有潜力为材料性能手册的编纂提供支持,并对相关工程方法提供改进方向.