论文部分内容阅读
针对神经网络存在结构较难确定,训练易陷入局部最优以及容易过学习等问题,提出将最小二乘支持向量机用干预测时用水量.最小二乘支持向量机(LSSVM)基于结构风险最小化,能够较好地协调经验风险最小化和学习机器VC维之间的关系,并且LSSVM在支持向量机(SVM)的基础上,通过将价值函数改为最小二乘价值函数以及用等式约束代替不等式约束,将求解的二次规划问题转变为一组等式方程.采用径向基核函数,得到LSSVM模型的待定参数比标准支持向量机少,仅为2个.根据时用水序列具有周期性和趋势性的特点,建立了基于最小二乘支持向