论文部分内容阅读
Standing of an Oblique Detonation Wave (ODW) on a wedge within combustor is the prerequisite of thrust generation for ODW engine which is regarded as a novel and conceptual propulsion device with hypersonic flight Mach number.Usually a standing window of ODW is defined as the wedge angle ranged from the ODW detached angle from wedge (upper limit) to the angle that a Chapman-Jouguet (CJ) detonation occurs (lower limit).For pathological detonation cases,however,the CJ detonation cannot be achieved,and thus the lower limit of the standing window of ODW should be revisited.In present study,two types of reactions in hypersonic incoming flow that include the behavior of pathological detonation,that is,the single-step irreversible reaction with mole variation and the two-step irreversible reactions with exothermic process followed by endothermic process,have been used for studying standing behavior of ODW.The steady detonation polar analysis of ODW is carried out for both reaction systems.The results reveal that the reaction with more mole decrement and the reactions with stronger endothermic process show the pathological detonation feature and therefore modify the lower limit of standing window of ODW.Three equivalent parameters are proposed to quantitatively measure the standing window range of ODW from points of view of thermodynamics,Mach number of incoming flow and heat effect of reactions.It is found that the standing window of ODW is determined by the specific heat ratio,the overdrive degree of detonation and the endothermic level of the hypersonic incoming flow,regardless of whether the detonation is pathological or not.