论文部分内容阅读
摘要:本文对数学教学中培养学生兴趣的重要意义进行了阐述,并对日常教学中如何创设轻松、愉快的学习氛围,激发学生的数学兴趣,引导他们积极、主动地对数学知识进行探究做了深入的分析,体现了以人为本的教学观和自主探究、激活思维的现代课堂观。
关键词:创新精神 激趣 导学
数学教学的成效很大程度上取决于学生对数学学习的兴趣。一旦学生对所学知识产生了浓厚的兴趣,就不会感到学习是一种负担。要让学生愉快有效地学习数学,关键在于激发学生的学习兴趣,让学生学有动力,因为学生是学习的主人,教师的教不能代替学生的学,应把学习的主动权交给学生,以学生为主体,突出学生的主体地位。如何才能激发学生学习数学的兴趣呢?
一、在享受成功的快乐中,巩固学生学习数学的兴趣
学生都有强烈的好胜心理,如果在学习中屡屡失败,就会对从事的学习失去信心,教师应该创造合适的机会使学生感受成功的喜悦。在教学中,教师恰如其分地出示难度适宜的问题,并且是学生想知道答案的,并且学生通过努力能答出来。这样的问题就会吸引学生,引发强烈的求知欲和兴趣。如在探讨“反比例函数y=-2/x的性质”时,教师依次提出下列问题:(1)这个函数的图像在哪两个象限?和函数y=2/x的图像有什么不同?(2)反比例函数y=k/x (k≠0)的图像所在的象限与什么参数有关?怎样确定?(3)联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律?这样的提问,问题难度由浅入深,涉及知识由易到难,学生通过思考都能回答上来,从而激发学生的求知欲,让他们感受成功,体会数学给他们带来的成功机会和快乐,从而培养他们学习数学的兴趣。
二、巧设问题情境,以“奇”促疑,激发学生学习数学的兴趣
新课标强调数学情境化,要求教师利用一些数学问题的趣味性,创设一种能有效激发学生学习动机和兴趣的情境,使学生的大脑处在最活跃的思维状态,促使学生愉快地学习、敏锐地探索,从而掌握一定的学习方法及基础知识,形成一定的技能。例如,在学习“有理数的乘方”时,我先对学生提出这样一个问题:“一张厚度为0.05毫米且足够大的纸对折二十五次后大约有多高?”当学生讨论未果后,教师说:“学了今天的内容,你就可以解决这个问题了。”这样,通过设疑引发学生探索新知识的兴趣,可促使学生积极思考,有利于把知识的被动接受转化为主动吸收,从而收到良好的教学效果。
三、设计悬念,激发兴趣
在教学中,让学生用已有的知识和经验解答似乎认识而又解答不了的问题,使其产生疑惑,促使其思维像上了弦的弓箭一样,蓄势待发。此时教师从中点拨,使其茅塞顿开,达到“一石击开水中天”的效果。
例如,初中《代数》第三册中“可化为一元二次方程的分式方程”的教学(第二课时)。学生已有的知识:分式方程的意义和去分母法解分式方程。
设计方法:①板书:解方程■+■=7,让学生利用去分母法把它化为整式方程:2x4-7x3+3x2+5x+1=0,这是一个高次方程,无法求解。此时学生已无路可走,进入了苦思冥想的境地。这时候教师点拨:①观察分式方程中的■与■的关系。②假若令■为y,则■怎样?原方程又可化为什么?化为2y+■=7。此时让学生求出y1=2,y2=■。③怎样求x,由于■=y,所以■=2或■,然后让学生分别解这两个分式方程得:x1=1+■,x2=1-■,x3=■,x4=■,从而解出方程■+■=7。最后教师归纳方法:此方法为“换元法”。
四、课外实践,激发兴趣
初中生普遍对数学知识在实际生活中的应用缺乏了解,造成知识与实际的脱节,针对上述情况,在教代数第三册第十三章“一次函数的图像和性质”时,我让学生用所学的数学知识去解决下面的这个实际的问题。
“同学们,过两天就是国庆节了,我们三7班的师生在国庆节这一天准备到风景秀丽的肇庆七星岩旅游。老师有5人参加,但学生人数还未能确定。现在有两个旅行社供我们选择:一个是新兴中旅,另一个是肇庆中旅。你们自由组合,分成甲、乙两组,选好组长,甲组去了解新兴中旅的价格,乙组去了解肇庆中旅的价格,今天下午第三节课集体讨论,比较一下我们参加哪个旅行社价格更实惠?”
下午第三节课的时候,甲组长汇报说:“我们去了新兴中旅打探价格,他们说带队老师无优惠,票价是每人200元,而学生可享受半价优惠。”乙组长说“我们去了肇庆中旅打探价格,他们说带队老师和学生全部按票价的5.5折优惠,而票价也是200元。”
“那么,究竟我们参加哪个旅行社更实惠呢?你们先讨论、比较一下,待会儿等参加旅游的同学的人数确定后,我们立即能知道结果,预定车票。”这时,学生兴趣高昂,三五成群地讨论开了,有的分别拿学生人数去试,结果试了很长时间还没找到结果。这时,我笑着启发他们:“你们知道是什么确定哪间旅行社更优惠吗?”学生们都异口同声地说:“是学生的人数。”我接着进一步启发他们:“能否用今天我们所学的一次函数的有关知识来解决上面的问题?”
经过教师的点拨与学生的合作交流,终于归纳出下列方法:设学生人数为x, 新兴中旅的收费为y1,肇庆中旅的收费为y2,根据题意得y1=100x+1000 ,y2=200×55﹪(x+5)=110x+550。
当y1>y2时,100x+1000>110x+550,即x<45;
当y145;
当y1=y2时,100x+1000=110x+550,即x=45;
构建上述一次函数关系,利用不等式来求解,清晰地显示出学生是什么人数时选择哪一间旅行社更优惠。于是,我进一步问:“现在我们有47位同学参加,你们知道选哪一间更旅行社更优惠了吗?学生异口同声大声说:“当然是新兴中旅啦。”实际的数学问题在欢乐的气氛中迎刃而解了。
总之,学生一旦对数学产生了兴趣,就会有了探索的欲望,会积极、主动地去学习。作为教师,我们必须结合数学的特点,精心设计每一节课,增强学生学习数学的浓厚兴趣,变“要我学”为“我要学”。
参考文献:
[1]禤锦科.关于创新式教育的思考[J].广东教育,1999(8).
[2]吴兴新.物理教学中的激趣艺术[J].优秀教育论文集:第一卷,2002(12).
[3]冯敏仪.建立函数模型解决实际问题[J].广东教育,2000(11).
(責编 赵建荣)
关键词:创新精神 激趣 导学
数学教学的成效很大程度上取决于学生对数学学习的兴趣。一旦学生对所学知识产生了浓厚的兴趣,就不会感到学习是一种负担。要让学生愉快有效地学习数学,关键在于激发学生的学习兴趣,让学生学有动力,因为学生是学习的主人,教师的教不能代替学生的学,应把学习的主动权交给学生,以学生为主体,突出学生的主体地位。如何才能激发学生学习数学的兴趣呢?
一、在享受成功的快乐中,巩固学生学习数学的兴趣
学生都有强烈的好胜心理,如果在学习中屡屡失败,就会对从事的学习失去信心,教师应该创造合适的机会使学生感受成功的喜悦。在教学中,教师恰如其分地出示难度适宜的问题,并且是学生想知道答案的,并且学生通过努力能答出来。这样的问题就会吸引学生,引发强烈的求知欲和兴趣。如在探讨“反比例函数y=-2/x的性质”时,教师依次提出下列问题:(1)这个函数的图像在哪两个象限?和函数y=2/x的图像有什么不同?(2)反比例函数y=k/x (k≠0)的图像所在的象限与什么参数有关?怎样确定?(3)联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律?这样的提问,问题难度由浅入深,涉及知识由易到难,学生通过思考都能回答上来,从而激发学生的求知欲,让他们感受成功,体会数学给他们带来的成功机会和快乐,从而培养他们学习数学的兴趣。
二、巧设问题情境,以“奇”促疑,激发学生学习数学的兴趣
新课标强调数学情境化,要求教师利用一些数学问题的趣味性,创设一种能有效激发学生学习动机和兴趣的情境,使学生的大脑处在最活跃的思维状态,促使学生愉快地学习、敏锐地探索,从而掌握一定的学习方法及基础知识,形成一定的技能。例如,在学习“有理数的乘方”时,我先对学生提出这样一个问题:“一张厚度为0.05毫米且足够大的纸对折二十五次后大约有多高?”当学生讨论未果后,教师说:“学了今天的内容,你就可以解决这个问题了。”这样,通过设疑引发学生探索新知识的兴趣,可促使学生积极思考,有利于把知识的被动接受转化为主动吸收,从而收到良好的教学效果。
三、设计悬念,激发兴趣
在教学中,让学生用已有的知识和经验解答似乎认识而又解答不了的问题,使其产生疑惑,促使其思维像上了弦的弓箭一样,蓄势待发。此时教师从中点拨,使其茅塞顿开,达到“一石击开水中天”的效果。
例如,初中《代数》第三册中“可化为一元二次方程的分式方程”的教学(第二课时)。学生已有的知识:分式方程的意义和去分母法解分式方程。
设计方法:①板书:解方程■+■=7,让学生利用去分母法把它化为整式方程:2x4-7x3+3x2+5x+1=0,这是一个高次方程,无法求解。此时学生已无路可走,进入了苦思冥想的境地。这时候教师点拨:①观察分式方程中的■与■的关系。②假若令■为y,则■怎样?原方程又可化为什么?化为2y+■=7。此时让学生求出y1=2,y2=■。③怎样求x,由于■=y,所以■=2或■,然后让学生分别解这两个分式方程得:x1=1+■,x2=1-■,x3=■,x4=■,从而解出方程■+■=7。最后教师归纳方法:此方法为“换元法”。
四、课外实践,激发兴趣
初中生普遍对数学知识在实际生活中的应用缺乏了解,造成知识与实际的脱节,针对上述情况,在教代数第三册第十三章“一次函数的图像和性质”时,我让学生用所学的数学知识去解决下面的这个实际的问题。
“同学们,过两天就是国庆节了,我们三7班的师生在国庆节这一天准备到风景秀丽的肇庆七星岩旅游。老师有5人参加,但学生人数还未能确定。现在有两个旅行社供我们选择:一个是新兴中旅,另一个是肇庆中旅。你们自由组合,分成甲、乙两组,选好组长,甲组去了解新兴中旅的价格,乙组去了解肇庆中旅的价格,今天下午第三节课集体讨论,比较一下我们参加哪个旅行社价格更实惠?”
下午第三节课的时候,甲组长汇报说:“我们去了新兴中旅打探价格,他们说带队老师无优惠,票价是每人200元,而学生可享受半价优惠。”乙组长说“我们去了肇庆中旅打探价格,他们说带队老师和学生全部按票价的5.5折优惠,而票价也是200元。”
“那么,究竟我们参加哪个旅行社更实惠呢?你们先讨论、比较一下,待会儿等参加旅游的同学的人数确定后,我们立即能知道结果,预定车票。”这时,学生兴趣高昂,三五成群地讨论开了,有的分别拿学生人数去试,结果试了很长时间还没找到结果。这时,我笑着启发他们:“你们知道是什么确定哪间旅行社更优惠吗?”学生们都异口同声地说:“是学生的人数。”我接着进一步启发他们:“能否用今天我们所学的一次函数的有关知识来解决上面的问题?”
经过教师的点拨与学生的合作交流,终于归纳出下列方法:设学生人数为x, 新兴中旅的收费为y1,肇庆中旅的收费为y2,根据题意得y1=100x+1000 ,y2=200×55﹪(x+5)=110x+550。
当y1>y2时,100x+1000>110x+550,即x<45;
当y1
当y1=y2时,100x+1000=110x+550,即x=45;
构建上述一次函数关系,利用不等式来求解,清晰地显示出学生是什么人数时选择哪一间旅行社更优惠。于是,我进一步问:“现在我们有47位同学参加,你们知道选哪一间更旅行社更优惠了吗?学生异口同声大声说:“当然是新兴中旅啦。”实际的数学问题在欢乐的气氛中迎刃而解了。
总之,学生一旦对数学产生了兴趣,就会有了探索的欲望,会积极、主动地去学习。作为教师,我们必须结合数学的特点,精心设计每一节课,增强学生学习数学的浓厚兴趣,变“要我学”为“我要学”。
参考文献:
[1]禤锦科.关于创新式教育的思考[J].广东教育,1999(8).
[2]吴兴新.物理教学中的激趣艺术[J].优秀教育论文集:第一卷,2002(12).
[3]冯敏仪.建立函数模型解决实际问题[J].广东教育,2000(11).
(責编 赵建荣)