论文部分内容阅读
在交互多模型中通常使用的卡尔曼滤波器中,引入广义H∞鲁棒滤波器,以一定的精度为代价,换取满意的鲁棒性能。H∞鲁棒滤波算法可以分解为卡尔曼滤波和鲁棒化两个环节,从而形成一种基于增益失调因子的结构化分解算法。、为验证算法的有效性,进行了Monte Carlo仿真。仿真结果表明,本文算法跟踪复杂机动目标时跟踪性能有较大提高,有很好的可实现性.