论文部分内容阅读
提出一种用于手写体字符识别的三级神经网络模型,各子神经网络均用粒子群优化算法(PSO)训练。在该模型中,各个神经网络与不同的图像特征提取方法相结合;识别时,三个神经网络先串联再并联。该模型充分有效地利用了各种特征信息,从实验结果看,也达到了较好的辨识目的。文中主要讨论手写字符图像的特征提取、粒子群优化算法及其在网络训练上的应用,最后分析了识别结果并与采用改进BP训练算法的综合识别效果进行了比较。