论文部分内容阅读
现在的小学数学课堂教学提倡高效,很多教师觉得内容多、节奏快、容量大、拓展深便是高效,我觉得这样的认识是片面的。课堂中“满堂灌”、“填鸭式”的教学,看似花的时间少了,其实巩固练习和后续的学习中必定出现的问题多多,需要去反复辅导,反而得不偿失。
课堂教学中,从切实改变学生的学习方式入手,让学生动手操作、自主探究、合作交流,有充分的时间尝试、思考、讨论,经历知识的形成过程,主动建构知识,掌握基础知识、形成基本技能、感悟基本思想、获得基本活动经验,从而发展数学思维能力、提高学生的数学素养,这才是高效的。
下面结合课堂教学案例,谈一些粗浅的实践和思考。
一、充分交流,掌握基础知识
小学数学的基础知识,由一个个微小的点连成线、铺成面、合成体,形成知识的结构网络。不要忽视任何一个微小的点,找寻可以放手让学生自主探究的地方,引导学生充分交流,让思维碰撞,不断产生新的想法,生动活泼地掌握基础知识。
例:《体积单位之间的进率》教学片断
师:这两个分别是1立方分米和1立方厘米的正方体,猜一猜,1立方分米等于多少立方厘米?请同学们讨论一下。
生1: 1×1×1=1立方分米,1分米=10厘米,10×10×10=1000立方厘米。我通过计算得出1立方分米等于1000立方厘米。
生2:1分米=10厘米,把正方体的每一条棱平均分成10份,得到每一份是1厘米。这样,1立方分米的大正方体一行可以摆10个1立方厘米的小正方体,可以摆10行,一层就是10×10=100个,可以摆10层,100×10=1000个。我通过摆一摆的方法得出1立方分米等于1000立方厘米。
生3: 1立方分米的正方体做成容器(厚度忽略不计)可以盛水1升,1立方厘米的正方体可以盛水1毫升,1升等于1000毫升,所以1立方分米等于1000立方厘米,我是通过单位转化得到的。
“1立方分米等于1000立方厘米”是一个非常微小的基础知识。如果采用直接讲授的方法可能只需要一分钟,但是学生的认知是静态的、接受式的、记忆式的;如果采用学生充分讨论和交流的方法,学生从不同的角度阐述知识形成的过程,虽然多花了一些时间,学生获得的认识是动态的、探究式的、理解式的。
二、尝试练习,形成基本技能
小学数学学习中,学生要形成的基本技能有很多,如:运算、推理、数据处理等等,基本技能需要通过一定的科学练习形成。引导学生自己大胆去尝试练习,通过比较、分析、归纳,发现一些本质特点,从而自觉形成思考过程,深刻领会思考方法,则有利于形成基本的技能。
例:《异分母分数加减法》教学片断
师:1/2 1/4可以直接计算出结果吗?为什么?
生:它们的分母不同,不能直接进行计算。
师:请同学们想办法尝试解答。
生1:我采用画线段图的方法,先把一条线段平均分成2份,找到1/2,再把它平均分成4份,找到1/4,从图上可以看出1/2就是2/4,所以得出计算结果是3/4。
生2:我把一张长方形纸平均分成4份,涂红色表示1/4,涂蓝色表示1/2,结果是 3/4。
生3:我采用通分的方法直接计算。
1/2 1/4=2/4 1/4=3/4
师:同学们用不同的方法计算出了结果,这三种方法中有什么共同之处?
生:都是把1/2看成2/4。
师:为什么把1/2看成2/4?
生:把分母变得相同,也就是分数单位相同,就可以按照同分母分数加法,直接进行计算了。
异分母分数加减法是计算教学的一个重要内容,让学生自己利用旧知识,尝试去解决新问题,主动探究新知识,形成新的基本技能,有利于发展学生的思维能力。
三、自主探究,感悟基本思想
数学学习和其他学科的学习一样,需要有一定的方法,如:对应、假设、比较、类比、转化、分类、集合等,众多的方法经过归纳提炼,形成基本思想——演绎和归纳。学生通过自主探究,感悟基本思想方法的产生、形成和发展,对于分析問题和解决问题的帮助是很大的,往往可以解决一类问题,或者是遇到新问题可以找到尝试切入的点,其影响是长久而深远的。
在学生初步感受转化的思想后,引导学生回忆,让学生感受转化的策略很熟悉,而且很有价值。同时,引导学生运用转化的策略去解决新问题,在学生接受挑战的过程中,进一步感悟和运用策略,形成基本的思想方法。
四、动手操作,获得基本活动经验
数学基本活动经验是指在数学目标的指引下,通过对具体事物进行实际的操作、考察和思考,形成和积累的过程知识。都说“儿童的智慧在指尖上”,引导和鼓励学生自己动手去操作,在实践中思考,在思考中改进,在改进中总结,在不断尝试的动手操作中逐渐丰富认识,积累并形成基本的活动经验。
其实,动手操作、自主探究、合作交流的学习方式,它们是有机统一的;基本知识、基本技能、基本思想、基本活动经验,它们是协同发展的。课堂教学中,我们要注重引导学生善于观察、积极思考、努力尝试、大胆表达、归纳总结,通过切实改变学生的学习方式,从而落实“四基”,更好地培养学生的数学思维能力,提高学生的数学素养。
【作者单位:昆山市实验小学 江苏】
课堂教学中,从切实改变学生的学习方式入手,让学生动手操作、自主探究、合作交流,有充分的时间尝试、思考、讨论,经历知识的形成过程,主动建构知识,掌握基础知识、形成基本技能、感悟基本思想、获得基本活动经验,从而发展数学思维能力、提高学生的数学素养,这才是高效的。
下面结合课堂教学案例,谈一些粗浅的实践和思考。
一、充分交流,掌握基础知识
小学数学的基础知识,由一个个微小的点连成线、铺成面、合成体,形成知识的结构网络。不要忽视任何一个微小的点,找寻可以放手让学生自主探究的地方,引导学生充分交流,让思维碰撞,不断产生新的想法,生动活泼地掌握基础知识。
例:《体积单位之间的进率》教学片断
师:这两个分别是1立方分米和1立方厘米的正方体,猜一猜,1立方分米等于多少立方厘米?请同学们讨论一下。
生1: 1×1×1=1立方分米,1分米=10厘米,10×10×10=1000立方厘米。我通过计算得出1立方分米等于1000立方厘米。
生2:1分米=10厘米,把正方体的每一条棱平均分成10份,得到每一份是1厘米。这样,1立方分米的大正方体一行可以摆10个1立方厘米的小正方体,可以摆10行,一层就是10×10=100个,可以摆10层,100×10=1000个。我通过摆一摆的方法得出1立方分米等于1000立方厘米。
生3: 1立方分米的正方体做成容器(厚度忽略不计)可以盛水1升,1立方厘米的正方体可以盛水1毫升,1升等于1000毫升,所以1立方分米等于1000立方厘米,我是通过单位转化得到的。
“1立方分米等于1000立方厘米”是一个非常微小的基础知识。如果采用直接讲授的方法可能只需要一分钟,但是学生的认知是静态的、接受式的、记忆式的;如果采用学生充分讨论和交流的方法,学生从不同的角度阐述知识形成的过程,虽然多花了一些时间,学生获得的认识是动态的、探究式的、理解式的。
二、尝试练习,形成基本技能
小学数学学习中,学生要形成的基本技能有很多,如:运算、推理、数据处理等等,基本技能需要通过一定的科学练习形成。引导学生自己大胆去尝试练习,通过比较、分析、归纳,发现一些本质特点,从而自觉形成思考过程,深刻领会思考方法,则有利于形成基本的技能。
例:《异分母分数加减法》教学片断
师:1/2 1/4可以直接计算出结果吗?为什么?
生:它们的分母不同,不能直接进行计算。
师:请同学们想办法尝试解答。
生1:我采用画线段图的方法,先把一条线段平均分成2份,找到1/2,再把它平均分成4份,找到1/4,从图上可以看出1/2就是2/4,所以得出计算结果是3/4。
生2:我把一张长方形纸平均分成4份,涂红色表示1/4,涂蓝色表示1/2,结果是 3/4。
生3:我采用通分的方法直接计算。
1/2 1/4=2/4 1/4=3/4
师:同学们用不同的方法计算出了结果,这三种方法中有什么共同之处?
生:都是把1/2看成2/4。
师:为什么把1/2看成2/4?
生:把分母变得相同,也就是分数单位相同,就可以按照同分母分数加法,直接进行计算了。
异分母分数加减法是计算教学的一个重要内容,让学生自己利用旧知识,尝试去解决新问题,主动探究新知识,形成新的基本技能,有利于发展学生的思维能力。
三、自主探究,感悟基本思想
数学学习和其他学科的学习一样,需要有一定的方法,如:对应、假设、比较、类比、转化、分类、集合等,众多的方法经过归纳提炼,形成基本思想——演绎和归纳。学生通过自主探究,感悟基本思想方法的产生、形成和发展,对于分析問题和解决问题的帮助是很大的,往往可以解决一类问题,或者是遇到新问题可以找到尝试切入的点,其影响是长久而深远的。
在学生初步感受转化的思想后,引导学生回忆,让学生感受转化的策略很熟悉,而且很有价值。同时,引导学生运用转化的策略去解决新问题,在学生接受挑战的过程中,进一步感悟和运用策略,形成基本的思想方法。
四、动手操作,获得基本活动经验
数学基本活动经验是指在数学目标的指引下,通过对具体事物进行实际的操作、考察和思考,形成和积累的过程知识。都说“儿童的智慧在指尖上”,引导和鼓励学生自己动手去操作,在实践中思考,在思考中改进,在改进中总结,在不断尝试的动手操作中逐渐丰富认识,积累并形成基本的活动经验。
其实,动手操作、自主探究、合作交流的学习方式,它们是有机统一的;基本知识、基本技能、基本思想、基本活动经验,它们是协同发展的。课堂教学中,我们要注重引导学生善于观察、积极思考、努力尝试、大胆表达、归纳总结,通过切实改变学生的学习方式,从而落实“四基”,更好地培养学生的数学思维能力,提高学生的数学素养。
【作者单位:昆山市实验小学 江苏】