论文部分内容阅读
岩性识别与分类对于地质分析具有重要的研究意义,是油藏描述和固体金属矿产资源勘探中的核心环节.传统的岩性识别方法受限于研究者的地质经验和实验设备的质量,受主观因素影响较大.为此提出了一种基于ResNet50网络模型和迁移学习的岩性识别与分类方法,首先使用预训练的ResNet50残差网络进行特征提取,然后利用改进的分类模型进行训练,最后在测试集上进行岩性识别分类.实验的数据集是使用工业相机在录井现场拍摄的岩屑和岩心图像,其中包含深灰色泥岩、深灰色粉砂质泥岩、浅灰色细砂岩等7类共315岩石图片.实验结果表明,所提模型对岩石样本数据的适用性较强,岩性识别准确率达到93.93%,能够很好地区分岩石类型且有较好的泛化能力和鲁棒性,可以满足实际应用需求.