论文部分内容阅读
目的:分析基于频繁模式增长(FP-growth)算法的2型糖尿病患病风险预测,避免经典Apriori算法在2型糖尿病相关危险因素分析中执行效率低的缺陷。方法:选取兰州某医院医学信息科2009年1月至2014年3月的2型糖尿病患者的首次病程记录资料及其健康数据档案,根据2型糖尿病相关危险因素分析中的需要,引入更适用于2型糖尿病相关危险因素分析的FP-growth算法。采用C#语言对经典Apriori算法和FP-growth算法进行编程,对比分析两种算法的执行效率。结果:通过对比分析得到两种算法在运行时间与记