论文部分内容阅读
针对感应电机非线性、强耦合、时变的特点,提出一种将核主成分分析(KPCA)和相关向量机(RVM)相结合的感应电机故障诊断方法。首先,对感应电机定子电流进行小波分解,并采用核主元分析方法有效去除信息的冗余,得到能反映感应电机运行状态的特征向量。然后,利用相关向量机对故障特征向量进行故障分类,识别感应电机的运行状态。通过对不同运行状态下感应电机进行识别分析,验证了此方法的可行性和实用性,并和其他3种方法比较,结果表明基于KPCA-RVM方法的故障诊断方法有较好的分类效果和泛化能力,是一种有效的感应电机故障诊断