论文部分内容阅读
基于深度学习框架,提出了一种精确高效的智能型负荷预测方法。首先,梳理了影响负荷预测精度的因素;然后,引入核范数聚类算法对负荷样本进行聚类处理;最后,基于GRU神经元搭建Seq2Seq技术框架。以某区域实际的历史负荷数据为基础,对所提方法进行了验证。实验表明,所提的智能型负荷预测方法考虑了多种影响负荷变化的因素,适应性强,能够显著地提升负荷预测的准确率。