论文部分内容阅读
Seepage flow through soils,rocks and geotechnical structures has a great influence on their stabilities and performances,and seepage control is a critical technological issue in engineering practices.The physical mechanisms associated with various engineering measures for seepage control are investigated from a new perspective within the framework of continuum mechanics;and an equation-based classification of seepage control mechanisms is proposed according to their roles in the mathematical models for seepage flow,including control mechanisms by coupled processes,initial states,boundary conditions and hydraulic properties.The effects of each mechanism on seepage control are illustrated with examples in hydroelectric engineering and radioactive waste disposal,and hence the reasonability of classification is demonstrated.Advice on performance assessment and optimization design of the seepage control systems in geotechnical engineering is provided,and the suggested procedure would serve as a useful guidance for cost-effective control of seepage flow in various engineering practices.
Seepage flow through soils, rocks and geotechnical structures has a great influence on their stabilities and performances, and seepage control is a critical technological issue in engineering practices. The physical mechanisms associated with various engineering measures for seepage control are investigated from a new perspective within the framework of continuum mechanics; and an equation-based classification of seepage control mechanisms is proposed according to their roles in the mathematical models for seepage flow, including control mechanisms by coupled processes, initial states, boundary conditions and hydraulic properties. effects. each mechanism on seepage control are illustrated with examples in hydroelectric engineering and radioactive waste disposal, and hence the reasonability of classification is demonstrated. Advice on performance assessment and optimization design of the seepage control systems in geotechnical engineering is provided, and the suggested procedure would serve as a useful guidance for cost-effective control of seepage flow in various engineering practices.