论文部分内容阅读
在模式识别、机器学习以及数据挖掘中,分类是一个基本而又重要的问题。虽有大量的分类器应运而生,但由于处理不完整数据的复杂性,它们大都是针对完整数据的。然而,由于各种原因,现实中的数据通常是不完整的。因此,对不完整数据分类器的研究具有重要意义。通过分析以往在分类过程中对不完整数据的处理方法,提出了一种不完整数据分类器:DBCI。在DBCI的训练过程中,将缺失值的频数按比例地分配到其它观测值的频数中。因此,不完整数据集所包含的信息可以得到充分利用。在12个标准的不完整数据集上的实验结果表明,与分类效果显著的不完