论文部分内容阅读
我们介绍一种直接由反射地震资料获得地下速度构型的体系。我们的方法是把量子散射理论的反演问题所得到的结果应用于反射地震问题。具体地说,我们把摩西(Moses,1956)反演量子散射的结果和拉扎维(Razavy,1975)声波动方程一维标识结果,推广应用到由边界值测量结果确定三维声波动方程中的速度问题上。我们假定事先并不知道地下速度,而且折射,绕射及多次反射现象都不予以考虑。此外,我们还解释了,在处理地震资料时为什么倾斜迭加概念是所提出的三维反演散射体系的一个重要的部分。
We present a system for obtaining subsurface velocities directly from reflected seismic data. Our approach is to apply the results obtained from the inverse problem of quantum scattering theory to the reflection seismic problem. Specifically, we extend the results of the quantum scattering back by Moses (1956) and the one-dimensional identification of the acoustic wave equation of Razavy (1975) to the three-dimensional acoustic wave equation determined by the boundary value measurement Speed problem. We assume that there is no prior knowledge of subsurface velocities, and refraction, diffraction, and multiple reflections are not considered. In addition, we also explain why the concept of oblique stacking in the processing of seismic data is an important part of the proposed three-dimensional inversion scattering system.