论文部分内容阅读
大数据背景下的音乐历史数据蕴含丰富的时间信息和用户行为信息,通过分析音乐艺人和听众行为数据,可以较为精准地预测音乐播放量走势,进而预测音乐流行趋势。传统的时间序列预测模型可以准确预测短趋势,但在长趋势预测中受历史信息衰减的影响,难以获得较好的效果。针对LSTM在音乐长趋势预测中历史信息衰减的问题,提出改进的LSTM滚动预测模型,该模型在预测阶段将前一次输入与当前预测结果相结合,使得历史信息可以沿预测趋势方向流动,从而缓解模型在长趋势预测中的历史信息衰减。实验采用“2016中国高校计算机大赛——大数据挑战赛:阿里音乐流行趋势预测”的比赛数据集,并使用比赛主办方提供的F值进行评估。实验结果显示:在相同条件下预测艺人未来30天的每日音乐播放量,最优LSTM滚动预测模型与LSTM、BiLSTM、GRU、RNN相比F值提高13.03%、16.74%、11.91%、18.52%,平均误差减少39.02%、48.55%、36.02%、52.88%;与传统的时间序列预测模型差分整合滑动平均自回归模型相比F值提高10.67%,平均误差降低32.64%。