论文部分内容阅读
目的随着遥感影像空间分辨率的提升,相同地物的空间纹理表现形式差异变大,地物特征更加复杂多样,传统的变化检测方法已很难满足需求。为提高高分辨率遥感影像的变化检测精度,尤其对相同地物中纹理差异较大的区域做出有效判别,提出结合深度学习和超像元分割的高分辨率遥感影像变化检测方法。方法将有限带标签数据分割成切片作训练样本,按照样本形式设计一个多切片尺度特征融合网络并对其训练,获得测试图像的初步变化检测结果;利用超像元分割算法将测试图像分割成许多无重叠的同质性区域,并将分割结果与前述检测结果叠合,得到带分割标记