论文部分内容阅读
为解决肺结节检测方法复杂、耗时且存在检测结果假阳性率高的问题,提出基于双路径网络(daul-path network,DPN)的肺结节自动检测模型。使用DPN自动提取深度特征,结合残差网络和密集连接网络实现特征复用;候选框提取使用三维编码解码网络结构,融合结节空间信息和上下文信息准确定位结节位置,生成多尺度候选框;将网络嵌入基于区域的全卷积网络框架中对结节实现分类。实验结果表明,该算法有效提高了结节检出率和检测速度,灵敏度达到90.5%,一个序列的肺部CT图像的处理时间为5.9 s。