论文部分内容阅读
针对样本间的不均衡性,提出一种基于成对约束的动态加权半监督模糊核聚类算法。在传统模糊聚类算法中加入半监督学习机制,通过Mercer核将原数据空间映射到特征空间,为特征空间中的每个向量分配一个动态权值,由此得到新的目标函数,并结合一种简单的核参数选择方法实现数据分类。理论分析和实验结果表明,与模糊核聚类算法及成对约束的竞争群算法相比,该算法具有更好的聚类效果。