论文部分内容阅读
针对传统模糊聚类分割方法无法有效模拟数据分布特征的问题,提出基于邻域约束高斯混合模型的模糊聚类图像分割算法.利用高斯分布刻画聚类内像素光谱测度统计特征,定义像素与其邻域像素相关性的先验概率,并作为高斯混合模型中各高斯分量权重系数,构建包含特征场邻域作用的高斯混合模型.利用高斯分量描述像素与聚类间的非相似性测度,建立基于高斯混合模型的模糊聚类目标函数.在传统模糊聚类方法基础上,采用高斯混合模型定义像素与聚类问的非相似性测度,并在高斯混合模型中融入邻域作用,有效解决数据具有多峰值特征的问题.最后通过实验验证文