In the process of high-harmonic generation with a Laguerre-Gaussian (LG) mode, it was well established that the topological charge could be of an N-fold increase due to angular momentum conservation. Here, by mimicking the effect of high-harmonic generation, we devise a simple algorithm to generate optical vortex arrays carrying arbitrary topological charges with a single phase-only spatial light modulator. By initially preparing a coaxial superposition of suitable low-order LG modes, we demonstrate experimentally that the topological charges of the embedded vortices can be multiplied and transformed into arbitrarily high orders on demand, while the array structure remains unchanged. Our algorithm offers a concise way to efficiently manipulate the structured light beams and holds promise in optical micromanipulation and remote sensing.
In this paper, we demonstrate a scheme for compensating distorted optical vortex beams carrying orbital angular momentum. By inputting the intensity profile into the Gerchberg–Saxton algorithm [
High-resolution X-ray flash radiography of Ti characteristic lines with a multilayer Kirkpatrick–Baez microscope was developed on the Shenguang-II (SG-II) Update laser facility. The microscope uses an optimized multilayer design of Co/C and W/C stacks to