论文部分内容阅读
运用矩阵光学技巧 ,球面镜光腔的往返一周光束变换矩阵可分解为两矩阵之积 ,它们各对应于一分数付里叶变换。因而光腔的振荡本质就是不断作用分数付里叶变换的过程。其稳定条件和束腰位置可用分数阶次描述 ,分数阶次可为复数。同时 ,给出了可能的拓展。
Using matrix optics, the reciprocal one-week beam transformation matrix of a spherical cavity can be decomposed into the product of two matrices, each corresponding to a one-fraction Fourier transform. Thus the nature of the oscillation of the optical cavity is the continuous role of fractional Fourier transform process. The stability conditions and waist position can be described by fractional order, fractional order can be complex. At the same time, given the possible expansion.