论文部分内容阅读
研究了一个三阶泛函微分方程周期解的存在唯一性和全局吸引性:x′′′(t)+ax′′(t)+bx′(t)+cx(t)+g(t,x(tτ))=p(t).这是一个常系数拟线性泛函微分方程.通过将这个方程转变为三维的拟线性微分方程(组),得到了这个方程存在唯一周期解的充分条件;通过选取适当的李雅普诺夫函数,推导了这个方程解的全局吸引性;进一步,得到了此方程周期解的全局吸引性.最后,举出了两个应用实例.