论文部分内容阅读
针对油茶果采摘脱壳后存在的果壳籽粒分选效率较低的问题,该研究提出了一种结合人工免疫网络(aiNet)与支持向量机(SupportVectorMachine)的多特征智能分选算法。该方法利用了免疫算法的多特征聚类特点与支持向量机的二分性特点,对油茶果壳与籽粒的延伸率、圆形度、圆满度、色差分量等6个特征进行分选。试验结果表明,该研究提出的方法在分选识别率上达到了97.4%,时间平均值为600 ms,证明了这种方法在油茶果壳籽粒分选作业中的实时性与有效性。通过与其他智能分选算法的效率对比分析证明,该研究提