论文部分内容阅读
目前,高光谱遥感影像分类时光谱信息使用较多,难以充分挖掘空间信息。针对该问题,提出一种基于改进萤火虫算法(Firefly Algorithm,FA)的高光谱遥感多特征优化方法。首先提取高光谱遥感影像的4种空间特征:局部统计特征、灰度共生矩阵特征、Gabor特征和形态学特征,并与波段选择的部分光谱波段组合,构建多特征集合;然后利用萤火虫算法对提取的多特征集合进行优化和特征选择,针对萤火虫算法收敛速度较慢问题,借鉴粒子群优化算法,引入随机惯性权重改进了萤火虫算法的位置更新公式;目标函数采用JM距离(Je