论文部分内容阅读
利用贝叶斯算法检测僵尸网络具有较高的准确性,但僵尸网络具有流量大的特征,同时贝叶斯分类训练阶段需要对大量的网络数据集进行训练,用单一结点来检测僵尸网络将会遇到计算时间和计算资源瓶颈.为此设计了基于MapReduce检测僵尸网络的贝叶斯算法,把贝叶斯算法训练阶段的先验概率、条件概率和检测阶段的后验概率的计算并行化处理.通过大量运行在Hadoop平台上的实验表明,该方法提高了检测僵尸网络的效率.