论文部分内容阅读
A 28 V-half-regulated power bus topology and an integrated PCDU(Power Conditioning and Distribution Unit) were adopted to meet the energy demand for the Chang’e 4 relay satellite. This paper first introduces the mission features and composition of the PSDS(Power Supply and Distribution System) for the Chang’e 4 relay satellite. Due to this satellite’s unusual orbit, operational mode and project restrictions, special analysis and design was conducted on the PSDS from the perspective of weight-reduction, power management, and reliability and so on. Extreme low temperature storage of SA(Solar Array) was considered and how the antenna affects the SA was analyzed. A new kind of high-specific-energy 45 Ah(Ampere-hour) battery cell was used for the first time. To make sure that the satellite would successfully pass the long shadow zones, a 100% DOD(Depth of Discharge) experiment was carried out on the battery. Since the sunlight is almost always available and there are very few times for the battery to charge or discharge, battery care to extend its lifetime is also discussed. PCDU is a device that integrates power conditioning and power distribution in one unit. The PCDU on Chang’e 4 relay satellite can output more power with less weight because of the adoption of a 28 V-half-regulated power bus topology which was also used for the first time and used lighter material for its mechanical framework. Experiment under low temperature on PCDU was conducted as well and a hot backup equalizing charge technique which is beneficial to keep performance of the battery is illustrated. The power distribution module, which is a module of PCDU, enhances the power utilization security by utilizing a static impedance measurement and build-in-test to avoid possible short circuits. As for EED(Electrical Explosive Device) module, a protection plug was specially designed and three switches with different functions were connected in series to prevent the EED from exploding by error. In addition, the allowable minimum EED bus voltage for each EED was evaluated in case of low battery voltage caused by the possible postponement of the launching time. Complete verification experiments on the ground were conducted to confirm the correctness of the design and on-orbit test data conformed to the expected results and theoretical calculation. The power supply and distribution system has been working normally since the day the Chang’e 4 relay satellite was launched into space.