论文部分内容阅读
矩阵分解由于其简单可靠的特性,是推荐系统中最重要的算法之一,由于内积无法完全捕捉用户和商品间的交互,矩阵分解的性能难以继续提升。为了解决这个问题,改进了基础的距离度量分解模型,提出了基于偏置度量分解与隐反馈的协同过滤推荐算法,并对用户评分时间动态建模,进一步提升了模型性能。针对推荐系统中最常见的评分预测任务,分别在三个数据集上进行实验验证,实验结果表明所提出的模型的预测准确率有明显提升。