论文部分内容阅读
传统面部图像的特征检测主要针对于灰度图像和二值图像,目前国内对于面部彩色图像(尤其是高清面部彩色图像)纹理特征的研究还处于起步阶段。针对于面部区域彩色图像特征,通过采集不同测试者早(健康状态)、晚(疲劳状态)大量面部彩色图像,据此建立面部图像数据库,划分数据库为P(疲劳图)、Z(正常图)、R(结果)三类。利用共生矩阵算法求得最大特征区域的纹理特征向量,用对比统计得到的数据测定正常与疲劳面部图像特征值的差别。实验结果表明,面部彩色图像的纹理特征反映了图像本身的属性,进一步描述了图像的细节信息,具有计算