,Fractional Tikhonov Regularization Method for a Time-Fractional Backward Heat Equation with a Fract

来源 :偏微分方程(英文版) | 被引量 : 0次 | 上传用户:roseisdead
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
In this paper,we consider a time-fractional backward problem with a fractional Laplacian.We propose a fractional Tikhonov regularization method for solving this problem under the the a-priori parameter choice rule.Error estimates are proved.Some numerical examples are shown to verify the effectiveness of the proposed method.
其他文献
试验于2009-2010年在内蒙古蹬口县和呼和浩特市园艺科技试验中心进行,采用盆栽和田间试验相结合的方法,研究了保水剂和PAM保水材料对小麦生长及土壤水分、生物性状的影响。结果表明:(1)0~80cm土层含水量,随土层深度的增加而逐渐增大。10~20cm土层,各处理间变化幅度较大,复配、SAP5、SAP3、PAM1.5、PAM2土壤含水量分别较对照增加8.72-60.09%、17.32~54.3%
This paper expounds the social significance of Hemingway s women characters. Through his colorful characterization, Hemingway exposes the social contradictions,
In this paper,the third model of four (3+1)-dimensional nonlinear evolution equations,generated by the Jaulent-Miodek hierarchy,is investigated by the bifurcati
In the paper, we consider the existence and uniqueness results for Caputo fractional differential equations with integral boundary value condition. The sufficie
In this paper,we investigate the Cahn-Hilliard equation defined on the half space and subject to the Neumann boundary and initial condition.For given initial da
We prove the global existence of a unique mild solutions to the incompressible MHD equations when the initial data are less than the viscosity coefficients in a
为了发掘影响水稻产量及其相关性状的QTL和重要的染色体区间,本研究利用以大穗型品种川香29B(籼稻)为母本,Lemont(粳稻)为父本构建了包含184个株系的F8重组自交系群体。在2009年,对单株有效穗数、穗长、一次枝梗数、二次枝梗数、每穗实粒数、每穗总粒数、着粒密度、结实率、千粒重和单株产量10个性状进行了QTL分析。主要研究结果如下:(1)构建了一张水稻全基因组的遗传连锁图,该图谱包含98个
In this paper, we derive the singular Moser-Trudinger inequality which involves the first eigenvalue and several singular points, and further prove the existenc
In this paper,using the Girsanov transformation argument,we establish Talagrand-type T2 inequalities under the d2 metric and the uniform metric d∞ for the law