论文部分内容阅读
在稀疏表示理论中,如何构造字典和更新字典,而能得到一个辨别能力强的字典,始终是一个重要的开放问题,针对这一问题,提出了基于字典原子与类标签关系的字典学习方法.建立一个基于两者关系的矩阵,随着更新字典原子而更新关系矩阵,通过更新关系矩阵来构成字典自适应地确定原子与类标签的关系,提高字典的判别能力,为后续的分类识别提供必要的保证.该方法既避免了共享字典判别能力差的问题,又避免了因单独训练字典而占用大量时间和内存的缺点.在构建字典模型中,引用l21范数约束残差值来去除噪声,使之既能处理稀疏噪声,也能处理非