论文部分内容阅读
相对于经典的采用逐点检测与复原方式实现的开关型随机脉冲噪声(Random-Valued Impulse Noise,RVIN)降噪算法,基于深度卷积神经网络构建的非开关型RVIN降噪模型在降噪效果和执行效率上均有显著优势,但也存在着固有的数据依赖缺陷,不能在降噪效果和易用性两个方面同时获得最佳性能.为此,以DnCNN(Denoising Convolutional Neural Network)深度降噪网络模型架构为设计基础,提出了一种新的用于去除RVIN噪声的两阶段盲卷积降噪(Two-stage