论文部分内容阅读
布卢姆在《教育目标分类学》中明确指出:数学转化思想是“把问题元素从一种形式向另一种形式转化的能力”。在解决数学问题时,往往不是直接解决原问题,而是将问题进行变换,使其转化为一个或几个已经能够解决的问题,这就是转化思想。利用转化思想方法而得到的新问题与原问题相比较,应该成为已解决的或较容易解决的。所以,转化的方向应该是化隐为显,化繁为简、化难为易,化未知为已知,化复杂为简单,化陌生为熟悉。
Bloom explicitly pointed out in Education Target Taxonomy that mathematical transformation is “the ability to transform the problem elements from one form to another.” In solving mathematical problems, often not directly solve the original problem, but to transform the problem, make it into one or several already solved the problem, this is the idea of transformation. The new questions obtained by using transformational thinking method should be solved or easier to be solved than the original ones. Therefore, the conversion should be the direction of the hidden changes, simplify the complex, the difficulty is easy, the unknown is known, complex as simple, familiar with unfamiliar.