论文部分内容阅读
针对金融领域的期权定价问题,为提高粒子滤波算法对期权价格的估计精度,提出使用混合卡尔曼粒子滤波算法(MKPF)进行期权价格预测,该算法使用Unscented卡尔曼滤波器和扩展卡尔曼滤波器作为混合建议分布产生重要采样密度。在某一时刻,每一个粒子首先经过Unscented卡尔曼滤波器更新得到一个状态估计值,然后以该估计值作为扩展卡尔曼滤波器的先验估计再次更新粒子,得到该时刻最终的估计值。实验中针对经典的Black-Scholes期权定价公式,使用包括MKPF算法在内的4种算法对期权价格进行预测,结果表明