论文部分内容阅读
针对PHOG特征在描述人脸形状时容易受到梯度强度突变及噪声干扰的缺点,提出了一种基于改进PHOG特征的人脸识别算法。首先对仅适用于描述清晰人脸轮廓形状的PHOG特征进行了改进,使其对人脸局部结构描述更加精细化,并通过改进的归一化方法达到对噪声的抑制,最后通过KPCA变换将改进的PHOG特征非线性映射到高维核空间中,进一步选择区分能力较强的特征分量,用最近邻分类器进行分类。在ORL、FERET和YALE人脸库中做了多组实验分别取得了98%、95%及98.67%的识别率,实验证明:该算法在抑制轮廓噪声提