【摘 要】
:
某浮选金精矿氰化浸出尾渣中Au品位1.58 g/t、Ag品位49.88 g/t,为了探索尾渣中目标矿物解离特征以及金、银未充分浸出的原因,对该浸渣开展了系统性工艺矿物学分析,结果表明,浸渣中裸露金含量占63.85%,这部分金在氰化浸出过程中属于可回收金;浸渣中有36.15%的金以包裹体形式存在,磨矿细度较粗是导致金金属流失的原因.在工艺矿物学研究基础上进行了浸出条件优化试验,确定适宜的金精矿浸出条件为:磨矿细度-0.037 mm粒级占95%、矿浆浓度50%、氰化钠浓度5 g/L、浸出时间36 h、溶氧度4
【机 构】
:
山东黄金矿业科技有限公司选冶实验室分公司,山东 烟台261441;山东黄金矿业(鑫汇)有限公司,山东 青岛266700
论文部分内容阅读
某浮选金精矿氰化浸出尾渣中Au品位1.58 g/t、Ag品位49.88 g/t,为了探索尾渣中目标矿物解离特征以及金、银未充分浸出的原因,对该浸渣开展了系统性工艺矿物学分析,结果表明,浸渣中裸露金含量占63.85%,这部分金在氰化浸出过程中属于可回收金;浸渣中有36.15%的金以包裹体形式存在,磨矿细度较粗是导致金金属流失的原因.在工艺矿物学研究基础上进行了浸出条件优化试验,确定适宜的金精矿浸出条件为:磨矿细度-0.037 mm粒级占95%、矿浆浓度50%、氰化钠浓度5 g/L、浸出时间36 h、溶氧度4.6 mg/L.在此条件下Au浸出率为99.30%,较现场生产提高1.73个百分点;银平均浸出率为64.41%,较现场生产提高24.41个百分点.
其他文献
对某生活垃圾焚烧飞灰进行了球磨水洗回收无机氯盐、蒸发分离氯化钙和浮选分离钾钠混盐等无机氯盐分离工艺研究,结果表明,球磨水洗?蒸发?浮选综合工艺获得了氯化钾、氯化钠纯度分别为98.31%、96.62%,回收率均高于90%的氯化钾、氯化钠产品.
随着航天电子产品向小型化、集成化方向发展,陶瓷柱栅阵列封装器件在星载产品中的应用越来越广泛.但陶瓷柱栅阵列封装器件装联工艺却存在着焊接工艺难度大,过程难以控制等问题,各个环节控制稍有误差,极易出现单个焊点虚焊、裂纹、气孔过多等问题,导致器件无法正常使用,甚至单板报废.仅仅因为陶瓷柱栅阵列封装器件焊接问题致使整板报废,不仅严重延误了产品的研制进度,也造成了巨大的经济损失.以相关单位使用情况分析来看,陶瓷柱栅阵列封装的芯片在通信有效载荷、数据处理、控制系统中大量使用,年使用量约为200~300片.近5年来每年
利用麒麟厂在1751~1031 m水平已建成的微震监测系统,通过数据采集及筛选处理,构建了有效微震事件库,并结合现场地压活动状况,从微震时间序列、空间分布与演化、定量地震学参数等方面对微震事件展开了分析研究,以确定多参量预警阀值,实现地压灾害监测预警.结果表明,麒麟厂微震监测系统的预警阀值为:时序集中度Q时>1,震中集中程度Q空≤100,地震学参数b≤0.20、βn≥1.5和η≥1.1.
针对加速度计故障定位测试方法不明确、周期长且定位不准确的问题,对加速度计故障机理进行研究以及验证.首先,通过对加速度计结构、工作机理、试验环境等方面的结合分析,从理论上研究了加速度计正负饱和、无输出等常见故障模式;其次,通过故障机理分析与20多种试验仿真模拟,建立每一种故障对应的故障模式;结果表明:加速度计每种故障与测试指标具有唯一对应性,通过±1g输出、正负静态电流I+与I-、传感器特性、力矩器特性,可以快速映射加速度计故障发生原因,针对故障发生的原因进行有针对性的恢复、维修或者更换,进而提高加速度计的
对湖南某钨多金属尾矿进行了综合回收萤石的浮选试验研究.实验室试验采用一粗一扫四精浮选流程,结合萤石高效浮选药剂,获得了萤石品位96.39%、总回收率62.65%的萤石精矿;新工艺工业试验获得萤石平均品位87.62%、平均回收率59.64%的萤石精矿指标,浮钨尾矿中伴生的萤石资源得到了高效综合回收.
为准确预判充填管道磨损等级,以金川龙首矿等4个矿山为例,选取了12个评价指标建立充填管道磨损评价体系,结合未确知测度理论,构建基于改进未确知测度的充填管道磨损风险性评价模型.该模型克服了评价指标之间的差异性和不确定性,以评价指标体系和指标分级模式为基础,确定各指标测度函数,建立各指标测度矩阵,并基于层次分析法?熵权法组合确定指标权重,得到多指标综合测度向量,最后借助改进的置信度准则准确预判充填管道磨损等级.结果表明,基于改进未确知测度的充填管道磨损风险性评价模型预测结果与实际吻合,表明该模型能有效预判充填
对青海某铜品位1.00%、钼品位0.067%、金含量3.04 g/t的铜多金属矿进行了选矿试验研究.采用铜钼等可浮?铜钼分离?铜钼等可浮尾矿选硫的工艺流程,闭路试验获得了钼精矿钼品位48.52%、钼回收率86.49%,铜精矿铜品位19.44%、铜回收率94.72%、铜精矿中含金57.10 g/t、金回收率90.44%,硫精矿硫品位36.56%、硫回收率32.84%.
以CaCl2为氯化剂,进行了氯化焙烧铜熔炼渣回收铅的研究,考察了焙烧温度、保温时间、氯化剂添加量和空气流量对铅金属回收率的影响,探讨了铜熔炼渣中铅的氯化挥发动力学.结果表明,当焙烧温度950℃、焙烧时间12 min、CaCl2添加量10%、空气流量100 mL/min时,铅的金属回收率达到92.71%.铜熔炼渣中铅的氯化挥发过程遵循界面化学反应控制的未反应核收缩模型,其反应表观活化能为83.002 kJ/mol.
针对刚果(金)某铜钴氧化矿含钴萃余液,采用生石灰与氧化镁为沉淀剂、焦亚硫酸钠与压缩空气为氧化剂,经除杂、一段沉钴、二段沉钴等工序,制备了粗制氢氧化钴销售产品.结果表明,适宜的除杂工艺条件为:生石灰浓度15%、反应时间5 h、反应pH=4.5、电位420 mV,此时除铁率达99.5%;一段沉钴适宜工艺条件为:反应pH=8.0、反应时间6 h、氧化镁加入量(tMgO/tCo)1.0,一段沉钴制备的氢氧化钴含钴45.6%;二段沉钴优化工艺条件为:反应时间3 h、反应pH=9.0,二段沉钴渣含钴34.2%;将二段