论文部分内容阅读
针对传统的复杂网络数据流频繁项集人工智能挖掘方法存在数据挖掘时间较长、准确性较低等问题,提出一种基于时间戳的复杂网络数据流频繁项集人工智能挖掘方法。在训练阶段,利用贝叶斯分类算法找到所有复杂网络数据流频繁项集,并计算不同复杂网络数据流频繁项集的概率估值,在测试阶段,针对不同的测试样本构造不同的分类器,集成分类器,获取分类结果。通过分类结果,构建时间戳的滑动窗口模型,根据滑动窗口的大小对项集进行延迟处理,当项集的类型变化界限超过一定的阈值时,需要重新计算支持度,根据计算结果更新变化界限,完成复杂网络数