论文部分内容阅读
传统的基于免疫的入侵检测系统需要足够的标记数据才能够生成具有良好泛化性能的抗体,而网络环境中获得充足的标记数据是困难的。为克服这一难题,对无监督聚类技术及免疫方法进行深入研究,并将二者结合起来,提出一种半监督的免疫入侵检测算法SCIID(Semi-supervised cluster based Immune Intrusion Detection)。在抗体产生阶段通过对自我样本进行聚类,大大缩短了阴性选择的时间;在入侵检测阶段采用聚类技术可快速获取未标记数据的类别,进而指导后续的学习过程,达到提高