论文部分内容阅读
针对传统Adaboost算法存在训练耗时长的问题,提出一种基于特征裁剪的双阈值Adaboost算法人脸检测算法。一方面,使用双阈值的弱分类器代替传统的单阈值弱分类器,提升单个弱分类器的分类能力;另一方面,特征裁剪的Adaboost算法在每轮训练中仅仅利用错误率较小的特征进行训练。实验表明基于特征裁剪的双阈值Adaboost人脸检测算法通过使用较少的特征和减少训练时的特征数量的方式,提高了算法的训练速度。