论文部分内容阅读
针对三维模型检索系统提高准确率、减少几何特征和人类语义丰富性之间的"语义鸿沟"等问题,提出一种基于高斯过程的语义分类和检索新方法.该方法采用一种统计2个采样点相对质心向量夹角的AC2直方图新特征,与形状分布的D2特征组合成低层特征,使用高斯过程进行三维模型语义分类的监督学习,计算测试模型的语义类概率预测分布,建立低层特征和查询概念之间的联系;使用语义距离和不相似度计算方法进行检索排序.实验结果表明:与已有的某些监督学习的方法相比,多类的测试模型进行语义分类的准确率明显得到提升,检索中能体现语义概念,