论文部分内容阅读
对于完备度量空间(X,d)及相应的分形空间(H(X),h),我们曾得到结论:如果(H(X),h) 中的分形列{An}收敛,则∪∞n=1An为(X,d)的完全有界集,{A n}的极限limn→∞An=∩∞n=1∪∞m=nAm,并且,当{An}单调增加时,∪∞n=1 An的完全有界性亦成为{An}收敛的充分条件。本文进一步研究了在除去{An}的单调 性情况 下,借助于∩∞n=1∪∞m=nAm 来寻找{An}收敛的充分必要条件问题,得到了其收敛的 特征,即{An}收敛当且仅当∪∞n=1An为(X,d)的完全有界