论文部分内容阅读
径流预报在水资源综合开发利用、科学管理、优化调度等方面起着至关重要的作用。针对不同预报方法预报精度存在差异的问题,选用多元线性回归模型(MVLR)、灰色动态GM(1,N)模型、人工神经网络模型(ANN)分别对宜昌水文站日、月、汛期、非汛期流量进行模拟与比较分析,并在此基础上建立组合预报模型(CP)。结果表明:ANN模型预报精度相对较高,预报效果总体优于MVLR、GM(1,N)2种模型;CP模型能够降低预报的风险,但预报合格率略有下降;各模型日尺度流量预报精度高于月尺度,非汛期预报精度高于汛期。