论文部分内容阅读
通过将粒子滤波算法与无迹卡尔曼滤波算法相结合,提出一种用于解决非线性、非高斯系统估计的改良粒子滤波算法。该算法在经典粒子滤波的基础上,利用无迹卡尔曼滤波生成更能够逼近真实后验概率分布的重要函数。实验结果表明,这种算法在预测结果收敛性能方面明显优于标准粒子滤波、广义卡尔曼滤波和无迹卡尔曼滤波等现有的非线性滤波器。