论文部分内容阅读
The photosensitive PZT sols and their gel films were prepared by sol-gel process. Based on the photosensitivity of the PZT gel films, two-dimensional (2D) array of the PZT gel film was fabricated using twice-exposure of double-beam interference on the gel film. PZT gel films coated on ITO/quartz substrate were exposed to an interference fringe of 325 He-Cd laser beams, the substrate was rotated by 90° between the first and second irradiation steps. Island type periodic 2D array structures with a pitch of 1 μm and cell size of about 480 nm × 480 nm × 40 nm were formed after the irradiation, and followed by leaching with organic solvent, and then by heat treatment at 600℃ for 15 min. The hysteresis loops of the cell in PZT array were in-situ measured by the online-operation of TF analyzer and atomic force microscope (AFM). The probe can be located on the locked cell of PZT array in the AFM image. The alternating voltage applied to the locked cell is supplied by the TF analyzer through the conductive coating probe, and then the test signal is fed back to the TF analyzer to obtain the hysteresis loop of the locked cell of array in the absence of top electrode. The results show that the sub-micro size PZT arrays prepared in this way are of polarization reversal characteristics with the alternating electric fields, thereby exhibiting obvious ferroelectricity.
The photosensitive PZT sols and their gel films were prepared by sol-gel process. Based on the sensitivity of the PZT gel films, two-dimensional (2D) array of the PZT gel film was fabricated using twice-exposure of double-beam interference on The gel film. PZT gel films coated on ITO / quartz substrates were exposed to an interference fringe of 325 He-Cd laser beams, the substrate was rotated by 90 ° between the first and second irradiation steps. Island type periodic 2D array structures with a pitch of 1 μm and cell size of about 480 nm × 480 nm × 40 nm were formed after the irradiation, and followed by leaching with organic solvent, and then by heat treatment at 600 ° C. for 15 min. The hysteresis loops of the cell in PZT array were in-situ measured by the online-operation of TF analyzer and atomic force microscope (AFM). The probe can be located on the locked cell of PZT array in the AFM image. The alternating voltage applied to the locked cell is supplied by the TF analyzer thro ugh the conductive coating probe, and then the test signal is fed back to the TF analyzer to obtain the hysteresis loop of the locked cell of array in the absence of top electrode. The results show that the sub-micro size PZT arrays prepared in this way are of polarization reversal characteristics with the alternating electric fields, exhibiting obvious ferroelectricity.